A case study is one of several ways of doing research whether it is social science related or even socially related. It is an intensive study of a single group, incident, or community.Other ways include experiments, surveys, multiple histories, and analysis of archival information.
Rather than using samples and following a rigid protocol to examine limited number of variables, case study methods involve an in-depth, longitudinal examination of a single instance or event: a case. They provide a systematic way of looking at events, collecting data, analyzing information, and reporting the results. As a result the researcher may gain a sharpened understanding of why the instance happened as it did, and what might become important to look at more extensively in future research. Case studies lend themselves to both generating and testing hypotheses.
Another suggestion is that case study should be defined as a research strategy, an empirical inquiry that investigates a phenomenon within its real-life context. Case study research means single and multiple case studies, can include quantitative evidence, relies on multiple sources of evidence and benefits from the prior development of theoretical propositions. Case studies should not be confused with qualitative research and they can be based on any mix of quantitative and qualitative evidence. Single-subject research provides the statistical framework for making inferences from quantitative case-study data.This is also supported and well-formulated in (Lamnek, 2005): "The case study is a research approach, situated between concrete data taking techniques and methodologic paradigms."
Case selection
When selecting a case for a case study, researchers often use information-oriented sampling , as opposed to random sampling. This is because an average case is often not the richest in information. Extreme or atypical cases reveal more information because they activate more basic mechanisms and more actors in the situation studied. In addition, from both an understanding-oriented and an action-oriented perspective, it is often more important to clarify the deeper causes behind a given problem and its consequences than to describe the symptoms of the problem and how frequently they occur. Random samples emphasizing representativeness will seldom be able to produce this kind of insight; it is more appropriate to select some few cases chosen for their validity.
Three types of information-oriented cases may be distinguished:
1. Extreme or deviant cases
2. Critical cases
3. Paradigmatic cases.
Extreme case
The extreme case can be well-suited for getting a point across in an especially dramatic way, which often occurs for well-known case studies such as in Freud’s `Wolf-Man.’
Critical case
A critical case can be defined as having strategic importance in relation to the general problem. For example, an occupational medicine clinic wanted to investigate whether people working with organic solvents suffered brain damage. Instead of choosing a representative sample among all those enterprises in the clinic’s area that used organic solvents, the clinic strategically located , ‘If it is valid for this case, it is valid for all (or many) cases.’ In its negative form, the generalization would be, ‘If it is not valid for this case, then it is not valid for any (or only few) cases.
Generalizing from case studies
The case study is effective for generalizing using the type of test that Karl Popper called falsification, which forms part of critical reflexivity [3]. Falsification is one of the most rigorous tests to which a scientific proposition can be subjected: if just one observation does not fit with the proposition it is considered not valid generally and must therefore be either revised or rejected. Popper himself used the now famous example of, "All swans are white," and proposed that just one observation of a single black swan would falsify this proposition and in this way have general significance and stimulate further investigations and theory-building. The case study is well suited for identifying "black swans" because of its in-depth approach: what appears to be "white" often turns out on closer examination to be "black."
For instance, Galileo Galilei’s rejection of Aristotle’s law of gravity was based on a case study selected by information-oriented sampling and not random sampling. The rejection consisted primarily of a conceptual experiment and later on of a practical one. These experiments, with the benefit of hindsight, are self-evident. Nevertheless, Aristotle’s incorrect view of gravity dominated scientific inquiry for nearly two thousand years before it was falsified. In his experimental thinking, Galileo reasoned as follows: if two objects with the same weight are released from the same height at the same time, they will hit the ground simultaneously, having fallen at the same speed. If the two objects are then stuck together into one, this object will have double the weight and will according to the Aristotelian view therefore fall faster than the two individual objects. This conclusion seemed contradictory to Galileo. The only way to avoid the contradiction was to eliminate weight as a determinant factor for acceleration in free fall. Galileo’s experimentalism did not involve a large random sample of trials of objects falling from a wide range of randomly selected heights under varying wind conditions, and so on. Rather, it was a matter of a single experiment, that is, a case study.(Flyvbjerg, 2006, p. 225-6).
Galileo’s view continued to be subjected to doubt, however, and the Aristotelian view was not finally rejected until half a century later, with the invention of the air pump. The air pump made it possible to conduct the ultimate experiment, known by every pupil, whereby a coin or a piece of lead inside a vacuum tube falls with the same speed as a feather. After this experiment, Aristotle’s view could be maintained no longer. What is especially worth noting, however, is that the matter was settled by an individual case due to the clever choice of the extremes of metal and feather. One might call it a critical case, for if Galileo’s thesis held for these materials, it could be expected to be valid for all or a large range of materials. Random and large samples were at no time part of the picture. However it was Galileo's view that was the subject of doubt as it was not reasonable enough to be Aristotelian view. By selecting cases strategically in this manner one may arrive at case studies that allow generalization.(Flyvbjerg, 2006, p. 225-6) For more on generalizing from case studies.
source : http://en.wikipedia.org
Rather than using samples and following a rigid protocol to examine limited number of variables, case study methods involve an in-depth, longitudinal examination of a single instance or event: a case. They provide a systematic way of looking at events, collecting data, analyzing information, and reporting the results. As a result the researcher may gain a sharpened understanding of why the instance happened as it did, and what might become important to look at more extensively in future research. Case studies lend themselves to both generating and testing hypotheses.
Another suggestion is that case study should be defined as a research strategy, an empirical inquiry that investigates a phenomenon within its real-life context. Case study research means single and multiple case studies, can include quantitative evidence, relies on multiple sources of evidence and benefits from the prior development of theoretical propositions. Case studies should not be confused with qualitative research and they can be based on any mix of quantitative and qualitative evidence. Single-subject research provides the statistical framework for making inferences from quantitative case-study data.This is also supported and well-formulated in (Lamnek, 2005): "The case study is a research approach, situated between concrete data taking techniques and methodologic paradigms."
Case selection
When selecting a case for a case study, researchers often use information-oriented sampling , as opposed to random sampling. This is because an average case is often not the richest in information. Extreme or atypical cases reveal more information because they activate more basic mechanisms and more actors in the situation studied. In addition, from both an understanding-oriented and an action-oriented perspective, it is often more important to clarify the deeper causes behind a given problem and its consequences than to describe the symptoms of the problem and how frequently they occur. Random samples emphasizing representativeness will seldom be able to produce this kind of insight; it is more appropriate to select some few cases chosen for their validity.
Three types of information-oriented cases may be distinguished:
1. Extreme or deviant cases
2. Critical cases
3. Paradigmatic cases.
Extreme case
The extreme case can be well-suited for getting a point across in an especially dramatic way, which often occurs for well-known case studies such as in Freud’s `Wolf-Man.’
Critical case
A critical case can be defined as having strategic importance in relation to the general problem. For example, an occupational medicine clinic wanted to investigate whether people working with organic solvents suffered brain damage. Instead of choosing a representative sample among all those enterprises in the clinic’s area that used organic solvents, the clinic strategically located , ‘If it is valid for this case, it is valid for all (or many) cases.’ In its negative form, the generalization would be, ‘If it is not valid for this case, then it is not valid for any (or only few) cases.
Generalizing from case studies
The case study is effective for generalizing using the type of test that Karl Popper called falsification, which forms part of critical reflexivity [3]. Falsification is one of the most rigorous tests to which a scientific proposition can be subjected: if just one observation does not fit with the proposition it is considered not valid generally and must therefore be either revised or rejected. Popper himself used the now famous example of, "All swans are white," and proposed that just one observation of a single black swan would falsify this proposition and in this way have general significance and stimulate further investigations and theory-building. The case study is well suited for identifying "black swans" because of its in-depth approach: what appears to be "white" often turns out on closer examination to be "black."
For instance, Galileo Galilei’s rejection of Aristotle’s law of gravity was based on a case study selected by information-oriented sampling and not random sampling. The rejection consisted primarily of a conceptual experiment and later on of a practical one. These experiments, with the benefit of hindsight, are self-evident. Nevertheless, Aristotle’s incorrect view of gravity dominated scientific inquiry for nearly two thousand years before it was falsified. In his experimental thinking, Galileo reasoned as follows: if two objects with the same weight are released from the same height at the same time, they will hit the ground simultaneously, having fallen at the same speed. If the two objects are then stuck together into one, this object will have double the weight and will according to the Aristotelian view therefore fall faster than the two individual objects. This conclusion seemed contradictory to Galileo. The only way to avoid the contradiction was to eliminate weight as a determinant factor for acceleration in free fall. Galileo’s experimentalism did not involve a large random sample of trials of objects falling from a wide range of randomly selected heights under varying wind conditions, and so on. Rather, it was a matter of a single experiment, that is, a case study.(Flyvbjerg, 2006, p. 225-6).
Galileo’s view continued to be subjected to doubt, however, and the Aristotelian view was not finally rejected until half a century later, with the invention of the air pump. The air pump made it possible to conduct the ultimate experiment, known by every pupil, whereby a coin or a piece of lead inside a vacuum tube falls with the same speed as a feather. After this experiment, Aristotle’s view could be maintained no longer. What is especially worth noting, however, is that the matter was settled by an individual case due to the clever choice of the extremes of metal and feather. One might call it a critical case, for if Galileo’s thesis held for these materials, it could be expected to be valid for all or a large range of materials. Random and large samples were at no time part of the picture. However it was Galileo's view that was the subject of doubt as it was not reasonable enough to be Aristotelian view. By selecting cases strategically in this manner one may arrive at case studies that allow generalization.(Flyvbjerg, 2006, p. 225-6) For more on generalizing from case studies.
source : http://en.wikipedia.org
Case study description
4/
5
Oleh
rew